查看“︁Surreal number”︁的源代码
←
Surreal number
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
==英語== {{wikipedia|lang=en}} ===詞源=== 1974年由{{w|高德納}}在其小說 ''Surreal Numbers: How Two Ex-Students Turned on to Pure Mathematics and Found Total Happiness'' 中提出。此概念後來由英國數學家{{w|約翰·何頓·康威}}應用在對圍棋博弈論的研究中。最初康威只稱其為 ''numbers'',但在1976年的 ''{{w|On Numbers and Games}}'' 中採用了高德納的用詞。 ===名詞=== {{en-noun}} # {{lb|en|數學}} [[超現實數]] #: {{ux|en|Conway's construction of '''surreal numbers''' relies on the use of [[transfinite induction]].|康威對'''超現實數'''的建構基於超限歸納法的使用。}} #: {{ux|en|Conway's approach was to build numbers from scratch using a construction inspired by his game theory research; the resulting class of '''surreal numbers''' proved much larger than the class of real numbers.}} #* '''1986''', Harry Gonshor, ''[https://books.google.com.au/books?id=fCjLwvRhKocC&printsec=frontcover&dq=%22surreal+number%22%7C%22surreal+numbers%22&hl=en&sa=X&ved=0ahUKEwjBip-Rj77iAhU27nMBHYICAnEQ6AEILDAB#v=onepage&q=%22surreal%20number%22%7C%22surreal%20numbers%22&f=false An Introduction to the Theory of '''Surreal Numbers''']'', {{w|劍橋大學出版社|Cambridge University Press}}, 1987, Paperback, {{ISBN|9780521312059}}. #* '''2012''', Fredrik Nordvall Forsberg, Anton Setzer, ''A Finite Axiomatisation of Inductive-Inductive Definitions'', Ulrich Berger, Hannes Diener, Peter Schuster, Monika Seisenberger (editors), ''Logic, Construction, Computation'', Ontos Verlag, [https://books.google.com.au/books?id=axA-uS3vwDoC&pg=PA263&dq=%22surreal+number%22%7C%22surreal+numbers%22&hl=en&sa=X&ved=0ahUKEwjBip-Rj77iAhU27nMBHYICAnEQ6AEIVjAK#v=onepage&q=%22surreal%20number%22%7C%22surreal%20numbers%22&f=false page 263], #*: The class<sup>2</sup> of '''surreal numbers''' is defined inductively, together with an order relation on '''surreal numbers''' wich is also defined inductively: #*:: • A '''surreal number''' <math>X=(X_L,X_R)</math> consists of two sets <math>X_L</math> and <math>X_R</math> of '''surreal numbers''', such that no element from <math>X_L</math> is greater than any element from <math>X_R</math>. #*:: • A '''surreal number''' <math>Y=(Y_L,Y_R)</math> is greater than another '''surreal number''' <math>X=(X_L,X_R)</math>, <math>X\le Y</math>, if and only if #*::: − there is no <math>x\in X_L</math> such that <math>Y\le x</math>, and #*::: − there is no <math>y\in Y_R</math> such that <math>y\le X</math>. #* '''2018''', Steven G. Krantz, ''Essentials of Mathematical Thinking'', Taylor & Francis (Chapman & Hall/CRC Press), [https://books.google.com.au/books?id=NGhQDwAAQBAJ&pg=PA247&dq=%22surreal+number%22%7C%22surreal+numbers%22&hl=en&sa=X&ved=0ahUKEwjBip-Rj77iAhU27nMBHYICAnEQ6AEIWzAL#v=onepage&q=%22surreal%20number%22%7C%22surreal%20numbers%22&f=false page 247], #*: Here we shall follow Conway's exposition rather closely. Let <math>L</math> and <math>R</math> be two sets of numbers. Assume that no member of <math>L</math> is greater than or equal to any member of <math>R</math>. Then <math>\{ L\vert R\}</math> is a '''surreal number'''. All '''surreal numbers''' are constructed in this fashion. ===延伸閱讀=== * {{pedialite|Hahn series|lang=en}} * {{pedialite|Hyperreal number|lang=en}} * {{pedialite|Non-standard analysis|lang=en}} * [http://mathworld.wolfram.com/SurrealNumber.html Surreal Number] on {{w|MathWorld|Wolfram MathWorld}} * [https://www.encyclopediaofmath.org/index.php/Surreal_numbers Surreal numbers] on {{w|數學百科全書|Encyclopedia of Mathematics}} [[Category:英語 數字]]
该页面使用的模板:
Template:En-noun
(
查看源代码
)
Template:ISBN
(
查看源代码
)
Template:Lb
(
查看源代码
)
Template:Pedialite
(
查看源代码
)
Template:Ux
(
查看源代码
)
Template:W
(
查看源代码
)
Template:Wikipedia
(
查看源代码
)
返回
Surreal number
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息