Surreal number

来自testwiki
imported>Sayonzei2021年9月13日 (一) 13:15的版本
(差异) ←上一版本 | 最后版本 (差异) | 下一版本→ (差异)
跳转到导航 跳转到搜索

英語

Template:Wikipedia

詞源

1974年由Template:W在其小說 Surreal Numbers: How Two Ex-Students Turned on to Pure Mathematics and Found Total Happiness 中提出。此概念後來由英國數學家Template:W應用在對圍棋博弈論的研究中。最初康威只稱其為 numbers,但在1976年的 Template:W 中採用了高德納的用詞。

名詞

Template:En-noun

  1. Template:Lb 超現實數
    Template:Ux
    Template:Ux
    • 1986, Harry Gonshor, An Introduction to the Theory of Surreal Numbers, Template:W, 1987, Paperback, Template:ISBN.
    • 2012, Fredrik Nordvall Forsberg, Anton Setzer, A Finite Axiomatisation of Inductive-Inductive Definitions, Ulrich Berger, Hannes Diener, Peter Schuster, Monika Seisenberger (editors), Logic, Construction, Computation, Ontos Verlag, page 263,
      The class2 of surreal numbers is defined inductively, together with an order relation on surreal numbers wich is also defined inductively:
      • A surreal number X=(XL,XR) consists of two sets XL and XR of surreal numbers, such that no element from XL is greater than any element from XR.
      • A surreal number Y=(YL,YR) is greater than another surreal number X=(XL,XR), XY, if and only if
      − there is no xXL such that Yx, and
      − there is no yYR such that yX.
    • 2018, Steven G. Krantz, Essentials of Mathematical Thinking, Taylor & Francis (Chapman & Hall/CRC Press), page 247,
      Here we shall follow Conway's exposition rather closely. Let L and R be two sets of numbers. Assume that no member of L is greater than or equal to any member of R. Then {L|R} is a surreal number. All surreal numbers are constructed in this fashion.

延伸閱讀